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Introduction

A research program was undertaken to develop a new experimental technique

commonly known as "particle image displacement velocimetry" to measure a

instantaneous two dimensional velocity field in a selected plane of the flow

field. Such a technique was successfully developed and applied to the study of

several aerodynamic problems. The detailed description of the technique is

given in Appendix I, which is a broad review of all the research activity carried

out under this grant.

The application of PIDV to unsteady flows with large scale vortical structures is

demonstrated in Appendix II, which describes the temporal evolution of the

flow past an impulsively started circular cylinder.

The instantaneous two dimensional flow in the transition region of a

rectangular air jet was measured using PIDV and the details are given in

Appendix III and IV. This experiment clearly demonstrates PIDV's capability

in the measurement of turbulent flows.

Preliminary experiments were also conducted to measure the instantaneous

flow over a circular bump in a transonic flow. Several other experiments are

now routinely using PIDV as a non-intrusive measurement technique to obtain

instantaneous two dimensional velocity fields.

A list of Technical publications is given in the next section.
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1. Introduction

One oI" the most challenging and time-consuming problems in experimental fluid

mechanics is the measurement of the overall flow field properties, such as the

velocity, vorticity, and pressure fields. Local measurements of the velocity field

(i.e., at individual points) are now done routinely in many experiments using

hot-wire (HW) or laser velocimetry (LV). However, man), of the flow fields of"

current interest, such as coherent structures in shear flows or wake flows, are

highly unsteady. HW or LV data of such flows are difficult to interpret, as both

spatial and temporal information of the entire flow field are required and these

methods are commonly limited to simultaneous measurements at only a few

spatial locations.

interpretation of these flow fields would be easier if a quantitative flow

visualization technique was used in conjunction with the flow field

measurements. Such a technique would provide both spatial and temporal

information. One such method is termed particle tracing (Gharib, Dyne,

Thomas, and Yap, 1987) and consists of measuring the streak lengths and

orientation generated by injecl.ed particles. However, this method only provides

partial results, because of its limitations in accuracy and spatial resolution

(Lourenco, 1986).

Although the vorticity field is an essential property oi_ most flows of current

interest, measurements of this quantity have exceeded experimental capability.

This difi3culty arises from the fact that vortieity is a quantity defined in terms of

local velocity gradients. In contrast, the currently available flow measurement

techniques, such as hot-wire anemometry or laser velocimetry, are sensitive on]3'

to the local velocity. Hence, measurements must be made over severa] points and

the resulting velocity components are then analyzed by l"_nite difference schemes.

However, the errors produced by the necessary differentiations ]imit the accuracy

and spectral range. In addition, the spatial resolution of this m_.thod is often not

sufficient to measure small-scale fluid motions of rapid]y changdng ve]ocity

gradients. As a consequence, the measured vorticity field is a type of spatially

averaged estimate of the actual vorticity field. Final]y, this method provides

information at only a single point. ]f information on the entire flow field is

required, measurements must be carried out sequentially one point at a time.

This sequential method, although laborious, is straightforward in applications

involving steady flows. However, the method becomes very difficu}t, if not

impossible, when studying unsteady flow_. Direct mc;Isurement ofvorticity has
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2. Principle of The Technique

The application of PIY to the measurement or the velocity in a fluid involves two

steps. First it is necessary to "create" a selected plane or surface within the flow

field. The orientation of this plane should be such that it contains the dominant

/low direction, irene exists. For instance, irthe technique is used to measure the

velocity field over a model in a wind tunnel, the plane will be parallel to the wind

tunnel flow axis. The plane itself is created by seeding the flow with small tracer

particles, such as those used in I,V ,_pp]ications, and illuminating them with a

thin sheet of coherent light, as depicted in Figure 1. A pulsed laser, such as a

Rub), or a Nd-Yag laser, or a CW laser with a shutter, is normally used as the

light source. The laser sheet itselris formed, for example, by focusing the laser

beam first with a long focal length spherical lens (to obtain minimum thickness),

and then diverging the beam in one dimension with a cylindrical lens. The light

scattered by the tracer particles in the illuminated plane provides a moving

pattern. When the seeding concentration is low, the instantaneous pattern

consists of resolved, diffraction-limited images of the particles. When the

concentration increases, the in]ages overl_tp and interfere to produce a random

speckle pattern. A multiple-exposure photograph, of two or more of the

instantaneous patterns and taken in quick succession, is used to record the data.

When the time interval between exposures is appropriately chosen, the tracer

particles wilI have moved only a few diameters, far enough to resolve their motion

but less than the smallest length scale of the flow. Thus, information on the local

fluid velocity is stored on the photographic image and can be retrieved by

subsequent analysis.

In a second step the local fluid velocity is de_Sved from the ratio of the measured

spacing between the images of the same particle, or speckle grain, and the time

between exposures. The recorded image, whether formed by isolated disks, in the

case of low particle concentration, or speckle grains for high particle

concentration, is a complicated random pattern. Several methods exist to convert

the information contained in the multiple-exposed photograph, or specklegram, to

I]ow field data such as velocity, stream]ir)es, or vorticity. ']'hose methods can be

_rouped into two broad categories. In the first category the distance between

particle pairs is evaluated direct]3'. That is, the absolute locations of the particles'

corresponding images in the photograph arc measured, for instance using a

digitized version of the photograph, and the velocity is determined by computing

the relative position of the corresponding images. The second category covers

those techniques that evaluate the particles' image spacings indirectly. They

exploit the property that all particles in a small region (small relative to the length
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scales of the fluid under study) are displaced roughly the same amount between

exposures. This property is exploited in several ways in both hardware and

software recently developed in digital image processing to determine the velocity.

One specific method in this second category, evaluation by Young's fringes, is

described in detail in Section 4.2, following a brief overview of other techniques in

Section 4.1. However, a brief background of how this analysis technique first

originated is described first.

For instance, it is conceivable to measure the local displacements by visual or

computer-aided inspection. ']'he data reduction systems that have been proposed

are based on the digitization of the entire photograph into a very large number of

pixels and the development of algorithms to permit computer identification of

individual streaks or pairs of particles. Methods for this direct analysis of these

images have been developed, but with limited success. Gharib et al,(]987),Elkins

et a] (1977), and Dimo_kis et a] (1981) are recent studies where this technique has

been used. PhotograI_hs based on these techniques are difficult to interpret when

the mean distance between two independent particles is the same order of

magnitude as the particle displacement. This difficulty is usually circumvented

by using low particle concentrations. However, flow field information is then

restricted to those isolated locations where particles are present. This results in

velocity measurements with low spatial density. Spatial derivatives of the velocity

(e.g., vorticity) are then difficult to estimate and must be inferred by indirect

argumenl.s, such as described by Dimotakis, et al, (1981).

It is important to realize that the multiple-exposure photograph produces a locally

periodic random image. This periodicity is proportional to the local velocity and

can be determined using Fourier or autocorrelation techniques. To obtain the

velocity field, the photograph can be scanned on a point-by-point basis, which

yields measurements of the local displacement (i.e., velocity), or with a whole field

filtering technique, which yields isovelocity contours. An example of this latter

method is given by Meynart, (1980). Recently, an anamorphic optical system has

been proposed by Colticott & Hesselink (196;5). This method performs a I-D Fourier

t:'ansform in the x-direction for measuring the x-velocity component, and images

the speckle patten-, in the y-direction. This results in curved fringes which have a

loca! spacing inversely proportional to the x-velocity at that point. Simultaneous

multiple point measurements are obtained by imaging in the y-direction. Thus, it

is possible to measure a velocity component along a selected line in the flow.
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4. Particle Image Analysis

4.) Overview of Analysis Techniques

The most common methods of analysis are point-by-point techniques. In this type

of analysis a small portion of the multiple-exposed photograph is examined, over

which the velocity field is assumed constant. Several techniques have been

developed to extract the flow field information. One approach consists of analyzing

the position of the particles in the image plane and measuring directly the inaage

pair spacings in the photographs. In this method the local particle displacements

are measured, for example, by determining the two-dimensional correlation of the

image field within the interrogation region. The spot is digitized in a NxN format

(where N is the number of pixel rows or columns) and a two-dimensional

correlation is performed. This results in a digital autocorrclation function with a

maxima at the coordinates corresponding to the average displacement of the

tracer particles. The major drawback of tiffs method is that the computation of the

autocorrelation function requires large data arrays and becomes extremely slow

when N is large. A new processing method, developed and used by Yao and

Adrian, (1984), reduces the general NxN element of a two-dimensional problem

into two N element one-dimensional problems, by compressing the information in

two orthogona] direction using integration techniques. ]n this method, cal]ed

"orthogonal image compression", the 2-D image of an interrogation region is split,

and optically compressed onto two orthogonally-aligned linear detector arrays.

Particle images in the 2-D region appear as peaks ira the a-D distributions of each

of the two array signals. The optimal method for determining the separation of the

peaks, and thus the velocity, depends on the inaage density, defined as the mean

number of particle image pairs in the interrogation region. If the inaage density is

less than one, the peak separation is measured directly in each orthogonal

direction. If the image density is greater than one, the peak separation is

evaluated using 1-D spatial correlation. A recent study by Landreth, Adrian, and

Yao, (1988) has indicated, however, that the correlation distvibutions given by this

technique sometimes included random peaks in addition to the peaks created by

the particle image pairs, resulting in incorrect measurements. These extraneous

peaks seem to be due to random imalde pairings. Modifications to this method to

prevent this possibility are currently being investigated.

4.2 Analysis of Young's Fringes

An alternate method for the measurement of the local displacement between the

two images of the particle pair is by the use of Young's fringes. These fringes are

obtained by illuminating a sma]} portion of the specklegram, or multiple-exposed

photograph, with a focused laser beam. The diffraction produced by coherent
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Identical shifting of all particle pairs wi]} result in perlect correlation. Two factors

reduce this correlation and can eliminate the fringe pattern. The first is when

there is a slight out-ohp]anc motion of the particles, due to three-dimensiona]

motions in the flow. The tolerance to out-of-plane motion is basically equivalent to

the width of the illumination sheet and the depth of field of the recording optics.

The time between exposures and the width of the illuminating sheet need to be

carefully selected to avoid too many particles entering or leaving the sheet between

exposures. The second factor is when the velocity varies across the interrogation

reg4on. This will cause the various particle image pairs to be displaced by different

amounts. This will not occur when the diameter of the interrogation region is

smaller than the smallest length scale of the flow being studied.

4.4 Data Processing

The Young's fringe pattern, produced by the techniques described in Section 4.2,

are analyzed using a digital image analysis system, which typically consists of a

host computer, a digital image processor, a fl'ame di&fitizer, pipeline processor,

and a video output, controller to convert digita] to ana]og information for display on

a monitor. The system also usually includes a two-dimensional traversing

mechanism and a controller lbr the purpose of auto,natically scanning the film

transparencies. Analysis of the fringes can occur in either an interactive mode,

which requires the assistance of an operator, or in an automated procedure.

The interactive method consists of first obtaining a 1-D periodic signal from the

straight fringes. This is performed by determining the fringe angle relative _o a

predetermined reference line, followed by an averaging over the lines of the

digitized picture as given by the following relation.

t_m) = EI[m÷(n-255)tancx,n], 0_m_<5ti (10)

where ftm) is the resulting periodic signal, I(m,n) represents the digitized

picture, and c_, is the angle of the fringes with the reference n axis. In this

equation it is assumed that the image is dig_itized with a 512x512 format with 25(;

shades of gray. The extraction of the frequency from this signal is

straightforward. The Fourier transform of f(m) displays a peak at the frequency

proportional to the velocity component parallel to the m axis. However, due to low

fi'equency modulation of the fringes, which is a consequence of the non-uniform

light intensity distribution in the diffraction halo, it is sometimes difficult to

identi_" this peak, especially if the fringes have a low frequency {i.e., few fringes).

To remove this modulation, the fringe signal can be passed through a high pass

filter prior to processing.
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5. Detailed Considerations

This section describes some of the parameters that can affect the use of" particle

image velocimetry. The impact of these parameters is discussed and, where

possible, recommended values are given.

The technique relies on the ability to detect and record on a photographic plate the

images of the tracer particles. This image is a function of the scattering power of

the particles within the fluid, the amount of light in the illuminating sheet, the

length of" time the film is exposed, magnification of the recording optics, and film

sensitivity at the wavelength of the illuminating laser light. The specific

parameters playing a role in PlY include the following. Additional details are

contained in Lourenco and Krothapa]li, (1987) and Smith, I,ourenco, and

Krothapalli, (1986).

Light source;

Tracer particle;

Exposure parameters;

t:ilm parameters;

Recording optics;

strength and duration of pulses

type, dimension, and concentration

duration, time between exposures, and number

of exposures

sensitivity, grain size, and resolution

magnification and lens aperture

These parameters are strongly interrelated and depend upon such factors as the

type of fluid, velocity range and length scales oF the llow being studied, and the

required spatial resoiution in the results.

5.1 Light Source

The light recorded on the specklegram is that which has been scattered 90 deg. to

the incoming laser light sheet. Extremely bright light sources are usually

required because of the low efficiency of this scattering process. Although the

particle detection increases proportionally with increasing power of the

illuminating laser, it is important to keep the laser power requirement to a

minimum, primarily because of" the expense. The specific amount of laser light

energy required is a function of tracer size and concentration, recording lens

aperture and magnification, and film sensitivity. For a successful photographic

recording of a particle image, the mean exposure of an individual particle image

must be greater than the film sensitivity at the wavelength of the illuminating

laser. This minimum sensitivity is sometimes referred to as the "gross fog" level

(Adrian and Yao, 1985). In analytical terms this is expressed as
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which a speckle pattern is formed, as shown in Figure 5. If Cp is the particle

concentration and Az the width of the lascr sheet, the maximum concentration is

given by

{1/(_zCp)}"2 >> dFM (17)

where d i is the image diameter, g,ivcn in equation (14).

The lower end in the PiY mode can be determined by tile criterion that, in order to

have a valid experiment, a minimum number of" particle image pairs must be

present in the area being scanned by the interrogation beam. The case of a single

particle image pair is ideal because it y4elds fringes with optimum signal-to-noise

ratio. However, this situation can only be achieved by lightly seeding the flow,

which gives rise to signal drop-out. An interesting case occurs when two particle

pairs are present in the interrogation area. The resulting diffraction pattern

includes multiple equally intense fringe patterns duc to cross interference of

non-corresponding image pairs. In this situation, shown in Figure 6, the local

displacement, cannot be resolved. As the number of particle image pairs in the

interrogation area increases, the cross interference fringcs become weaker in

comparison with the main fl-inge pattern, which reflects the local displacement.

These cross-interference fringes are sometimes called "background speckle

noise". Experience shows that, for reasonable fl-inge quality, at least four particle

image pairs should be present in the interrogation area.

At the high end of the particle concentration scale, the LSV mode, the particle

concentration is governed by convenience, economics, and flow distortion.

Attempting to obtain these high particle concentrations in large scale flows or in

high speed flows, such as in a wind tunnel, can become exceedingly diPfcult, as

well as expensive as the actual number of particles increases. Finally, the high

concentration of particles required by the LSV mode may influence or distort the

flow field being studied. For these reasons, the PIV mode is normally used.

5.4 Exposure Parameters

The exposure parameters are chosen in accordance with the maximum expected

velocity in the flow field and the required spatial resolution. The spatia]

resolution, which in turn is equal to the cross-sectional area of the interrogating

laser beam, is dictated by the scales associated with the fluid motion. So as not to
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lose any information, the spatial resolution should be less than the smallest scale

in the flow being studied.

The time between exposures, T, is determined by the maximum permissible

displacement of a particle such that a correlation is obtained when the negative is

analyzed locally with a probe laser beam. A necessary condition to obtain a fringe

pattern is that the distance between adjacent particle images be less than a

fraction of the ana]yzing beam diameter. In practice, the maximum permissible

displacement that can be detected corresponds to the case when the fringe spacing,

dr, is larger than the diffraction limited spot diamet.er, dt, of the interrogating

optics. In analytical terms,

df = },afLIMTVmax > d I : 4 )._fL/_D (18)

The time between exposures can then be expressed as

T = (0.5)D/MVma x {19)

For practical purposes the value of (0.5) is used instead of the mathematically

correct (a/4), as given in equation (18). This points up another advantage of this

technique, in that the velocity sensitivity range can easily be shifted by altering the

pulse separation, T.

For very short exposures the recorded particle images are identical to the

diffraction limited particle images, as the particles appear to be stationary during

the exposure. When the exposure time is increased, the recorded images becomes

streaks whose length is dircct]yproportional to the exposure time. The diffracted

light in the spectrum is concentrated in a band whose width is inversely

proportional to the streak length. For optimum exposure, Lourenco (1984) has

shown that the exposure time, At, should bc

5t = d i / MVmB _ (20)

where d i is the particle image diameter.

5.5 Film Parameters

The technique relies on the ability' to detect and record on photographic media the
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5.7DynamicRange
Thedynamicrangeof thetechniquereferstoits abilitytoresolvelargevelocity
gradientsin theriot,field. ]t isdefinedastile largestvelocity difference that can

be detected. The lot' end orthe dynamic range is determined by the requirement

that the spacing between successive particle images be well resolved. That is,

simply that the), do not overlap. ]n analytical form,

l_ = d i + Vmi n A[ < _'J_lmin (21)

where 1s is the spacing between successive particle images. It was shown in the

previous section that T, the time between exposures, is related to the maximun_

velocity Vma x as

T = (0.5) D / MVma _ (19)

For a pulsed laser and lot, speed flows it is sufficient to assume that at = 0. Thus,

combining these EquatJons (21) and (19),

Vmi n = 2M d i \'ma_ / D (22)

The velocity dynamic range is then defined as the normalized velocity difference,

AV = (Vma x - Vmin)/Vmi n

and is written as

(23)

AV = (D / 2M d i) - I (24)

for a pulsed laser. Considering typical values of d i = 0.3 ram, D = 5 ram, and M =

1, a dynamic range of 7.5 can be expected. A relation similar to equation (24) can

be obtained for a CW laser, using At = d i / Vrn_x. Follot, ing the same line of

reasoning,

AV=(D-2di)/(2Mdi_ - 1 (25)
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for a CW laser. A powerful advantage of this technique is evident in these

equations. That is, by adjusting the magnification M in recording the

specklegrams, the system sensitivity can be altered to accommodate the amount of

motion anticipated in the experiment.

5.8 Direction Ambiguity

One disadvantage of using a multiple-exposure photograph to extract velocity data

is the 180 deg. ambiguity in determining the direction of the velocity vector. That

is, given identical conditions in recording each of the two exposures, there is no

property identifying the order in which the two images of the particle were

recorded. Measuring the separation of the partic}e image pair provides the

magnitude of the velocity at that point, but is insuMcient to give the direction of the

velocity vector field. Thus, a given displacement will indicate a velocity of+/- U,

with the sign being ambiguous. Many flow fields of interest (such as wakes and

separated flows) contain regions of reversed flow and the direction may not be

known a priori. Thus, a means to remove this ambiguity would be very useful.

A method to resolve both this ambiguity of the velocity vector, as well as to improve

the dynamic range of the measurements, has been developed by Adrian, (1986) and

Lourenco, et al (1986). This method is termed "'spatial image shifting' or "velocity

bias technique". The method consists conceptually of recording the flow field in a

moving reference frame, and thus superposing a known velocity bias to the actua]

flow velocity. This is accomplished by sififting _,he image by a known displacement

between the two exposures. The image can be shifted physically using a moving

camera, or by optical means using rotating or scanning mirrors. This effect is

demonstrated in Figure 7. Consider a flow field with regions of reversed flow, and

with velocities ranging up to a value V. Four such velocities, one in each of the

four quadrants, arc shown in the figure. Using standard PIV recording

techniques, it would not be possible to resolve between velocities 13"ing in the first

(or second) quadrant from those lying in the third (or fourth) quadrant. Now

impose a velocity V', much larger than V, as in Figure 7. The four velocity vectors

are now transformed into four distinctly different vectors, depending upon their

direction. The correct velocity, with its direction, can now be easily obtained upon

removal of the velocity bias.

The method currently employed uses a scanning mirror to displace the image

during the exposure with a predetermined velocity. A schematic of the scanning

mirror arrangement is shown in Figure £. Consider two particle pairs A B and C

D, having equal displacements in opposite directions in the object plane. By

introducing a ,nirror placed at 45 deg. between the camera lens and the object



152

V 3

ljv,
'......

-!.-

_J
v_*

V,k

Vl _

Figure 7. Removal of Direction Ambiguity Using Velocity Bias



153

Object plone

\

B.C A.D

_'"---. -.. e_c'

iON_\_ A',O'Rotor "'_"
Mirror \ '. "_

B,C
b

AD

IM mosr_hcol;¢ r

AP-,': AB - 1CD':CD. 2L=0_4

a3rT_ro
Lens

"_'_--'- ""_" A,_ ,D_ i

_, c_c_
F'dm
p;one

Figure 8. Scanning Mirror Arrangement for Imposing Velocity Bias



15,_

plane,thecorrespondingdisplacementsappearin thefilm planeasABandCD

withequalmagnitudes.Whenthemirroris rotatedbyanangleof 40 between
exposures,tile displacementscorrespondingto A B and C ]) appear in the film

plane as AB' and CD', with different magnitudes, resolving the direction

ambiguity.

Figure 9a is a double-exposure photograph of the Ilow past in impulsively started

airfoil captured at a stage of its development corresponding to a non-dimensional

time of t" = tU/c, where t is the time from the start of tile motion, U is the

fi-ee-stream velocity, and c is the airfoil chord. This figure depicts a complex flow

field and exhibits large regions of flow reversal. Analysis of this photograph

would yield velocity vector information only within tile restriction of the 180 deg.

direction ambiguity. In addition, there would also be regions of drop-out where the

flow velocity is less than the lower velocity range limit of this technique. Using the

velocity bias technique, with a bias velocity equal to two times the free stream

velocity, gives the biased images silown in Figure 9b. The velocity field obtained by

analyzing Figure 9b is shown in Figure ]0a. The actua] velocity field, in the

reference frame of the airfoil, is given in Figure 10b, upon removal of the velocity

bias.

5.9 Overall Accuracy of the Technique

It has been pointed out that out-of-plane motion (i.e., three-dimensional motion) is

a severe limitation to this technique in the application to fluid flow. The reason for

this limitation is that out-of-plane motion by the tracer particles results in patterns

that are poorly correlated. Consider tile imaging system shown in Figure 11, with

the particle in position Po within the laser sheet. The particle will more to a new

position R 0 between exposures duc to the fluid motion, including an out-of-plane

motion dz. In the image plane the corresponding posit, ions are PL and R L. The

coordinates of these latter two locations are, neglecting second-order and higher

terms for simplicity,

PL; I-'Mx, -My, (d o + alL)}

EL: {-M(x + dx)(1 + dz/dL), -M(y + dy)(1 + dz/alL), (d o + dL)) (2G)

The displacement between these two locations, PL RL, determined by the method of

Young's fi-inges, is given by
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Figure 10a. Instantaneous Velocity Field of Airfoil Impulsively Started from Rest;

Before Removal of Velocit.y Bias
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Figure lOb. Instantaneous Velocity Field of Airfoil Impulsively Started from Res<

Aftcr Rcmoval of thc Velocity Bias



159

OBJECT PLANE

x

x+dx

R° { Ydz+ dy
x

LENS

d o

d L

RL

"_z

{PL ---My

dL+d o

IMAGE PLANE

Figure 11. Schematic oflma_ng System Estimating the Effect of Out-Of-Plane

Motion
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dxm=M dx(] +xdz/dxdL), dym=Mdy(1+yd_/dydL) (27)

Thus,the measureddisplacementcomponents,referredto the objectplane,
become

dxo= dx + x dz/d L, dy 0 = dy -+y dz./d b (28)

The contribution of the out-of-plane displacement to the measured displacement is

given by the two parasite terms, x dz./ d L and y dz/d L. The error produced by

three-dimensional motion is a function of the distance from the optical axis. While

negligible near the optical axis, it increases linearly, and may become important,

farther away. The importance of the out-of-plane motion therefore becomes

particularly important when using short focal lengths and wide angle objectives.

The overall accuracy of the technique can be eva]uated by studying the uniform

riot' field created by towing a camera at constant speed past a quiescent riot'.

Several multiple-exposure photographs were taken, with differing times between

exposures, thus resulting in photographs with particle pairs at different known

distances. The range of time between exposures, as well as the distance between

corresponding particle images in the film plane are presented in Table 1. A large

number of points (100) of these five photographs were analyzed using the methods

described previously. Uncertainties in the experiment include errors introduced

during the recording of the multiple-exposure photograph, such as the ones

introduced by distortion of the scene being recorded by the camera lens, limited

film resolution, and inaccuracies due to the processing algorithms.

In the absence of a systematic bias, the standard deviation of the measured velocity

distribution is an estimate of the mean measurement error. Analysis of the film

transparencies using the two techniqucs (the interactive, one-dimensional

avera_ng method and the automatic autocorrelation method) yields the same

mean value with a nearly equal standard deviation (Table 1). The values in Table 1

indicate that using these methods, inaccuracies of the order of 1-2 9_ are expected.

It is believed that these inaccuracies are due to a combination of the limited

resolving power of film used for recording (only about 100 lines/mm) and the

limiLed response of the camera lens. Another source of error which is not

accounted for in this analysis is the one due to the spurious contributions on the

in-plane displacement recording by the out-of-plane motions (Lourenco & Whiffen,

1984, Lourenco, 1986).
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Table 1. Overall Accuracy of the Technique

Time Between Fringe RMS Fringe Measured

Exposures, msec Frequency Frequency Distance, pM

22.2 33.447 0.257 194

25.0 37.045 0.208 218

28.6 42.950 0.381 219

33.3 49.037 0.710 291

40.0 60.693 1.190 3,rJJ
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6. Examples

6.1 Flow Behind a Circular Cylinder

The time-space development of the near wake flow behind a circular cylinder

impulsively accelerated from rest to a constant velocity is studied in this first

example. This flow is excellent as a first Example because it contains large-scale

vortical motions end has extreme velocity gradients. Also it is a well-studied flow

and there are several theoretical analyses.

A classic flow visualization stud), of this flow was performed by Prandtl (1927) and

reveals several interesting flow features. Soon after the motion begins, the

boundary layer separates and vorticity is convected away from the rear of the

cylindcr. Two symmetric eddies are formed behind the cylinder, each containing

vorticity of opposite sign. The two separating streamlines that surround these

eddies join downstream of the eddies and form a closed vortex region. The size of

this region grows with time and eventually becomes larger than the cylinder

itself. As time increases still further, perturbations cause the standing vortices to

develop asymmetric oscillations. Eventually, some of the vorticity in the larger

eddy breaks away and moves downstream. The process repeats itself with the

other eddy and the flow develops into the familiar Karman vortex street.

The experiment was conducted by towing circular cylinder, 25.4 mm in diameter

through a towing tank measuring 300x200x600 ram. The towing carriage is

driven by a variable DC motor, and the towing velocity was 22 mm/sec. The

Reynolds number, based on cylinder diameter, was 550. The fluid used in the

experiment was water seeded with 4 micron metallic-coated particles. For the

illumination, a laser beam from a 5 Watt Argon-Ion laser is steered and focused

to a diameter of 3 mm using an inverse telescope lens arrangement. A

cylindrical lens, with a focal length of-6.34 mm, is used to diverge the focused

beam in one dimension, creating a light sheet. Thelaser sheet was 70 mm wide

and the illuminated the mid-span section of the cylinder. For the multiple

exposure, the CW laser beam was modulated using a Bragg cell. In this

experiment the laser power density, I 0, of the sheet was 0.27 W/mm 2. A 35 mm

camera, attached to the towing carriage, was used to record the flow field. The

frequency at which the multiple exposures were taken was 1.7 Hz. The aperture

of the lens, with a focal length of 50 mm and a space of 12 ram, was set at F#5.6

and the resulting magnification factor was 0.40. The exposure time, t, and the

time between exposure, T, were chosen by the criteria described in SeeLion 5 and

arc 3 msec and 30 msec, respcctive]y. These two parameters, along with the
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diameter of the analyzing beam and the particle image diameter, determine the

dynamic range of the velocity (see Section 5). For this experiment, the dynamic

range was roughly 6.

The flow was captured at several stages of its development, corresponding to t',

where t* = tUfD, the non-dimensional time, t is the time from the start of the

motion, Uis the free strcam velocity, and D is thc cylinder diameter. Figure ]2a-d

show typical multiple-exposure photographs of this flow field. ]n Figure ]2a, at t"

= 2.2, the two symmetric eddies are clearly seen in the wake of the cylinder and

tile closed vortex region is roughly the same size as the cylinder diameter. At a

later time, t* = 3.2, (Figure 12b) the eddies are still symmetrical but has grown

much larger. At a still later time, t" = 4.2, (Figure 12c) the as?wnmetry is just

beginning. Finally, at t* = 5.2, (Figure 12d) the flow field is completely

asymmetric and vorticity front tile upper eddy is about to break away and move

downstream.

The velocity data are acquired in a square mesh by digital processing of the

Young's fringes, produced by point-by-point scanning of the positive contact cop),

of the photograph (Lourenco, 19S6). The scanning step size and the dimension of

the interrogating laser beam are both 0.5 mm, which, with the magnification of

0.40 corresponds to a spatial resolution of about 1.25 mm in the object plane. This

is about ]/20 of the diameter of the cylinder. The fringes were processed usingthe

methods described in Section 4. The resultant two-dimensional velocity fields,

corresponding to Figures 12a-d, are shown in Figures 13a-d are a good

representation of the expected flow pattern. The length of each vector in the

Figure 13 is proportional to the local velocity at that point.

Because of the high spatial resolution of these data, vorticitv contours can be

derived by taking spatial derivatives of the velocity data. Letting each grid location

be labeled with indices (i j), the vorticity component at location (i j) is given by

"Qij = $"2{('_Zi+lj 'Vi-Ij)/2AX " (Uij+l b'iJ -1)/2_'1'} (29)

where f2ij is the vorticity at point (ij), U and V are the longitudinal and lateral

velocities, and Ax and Ay arc the mesh intervals in the streamwise and

cross-stream directions, respectively. Figure ]4a-d show the smoothed vorticity

centours, normalized with respect to the free steam velocity and the cylinder

diameter. To aid in the understanding of this flow, the value ofvorticity can be
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(a)

[

(b)

Figure :12. Multiple-Exposed Photographs of" the Wake Flow Field Behind a

Circular Cylinder; a) t" = 2,2; b) t" = 3.2; c) t" = 4.2; d) t" = 5.2
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Figure 12. Multiple-Exposed Photographs orthe Wake Flow Fie]d Behind a

Circular Cylinder (Concluded); a) t" = 2.2; b) t" = 3.2; c) t" = 4.2; d) t" = 5.2
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Figure 13. Instantaneous Velocity Field of the Wake Flow Field Behind a Circular

Cylinder; a) t" = 2.2; b) t" = 3.2; c) t" = 4.2; d) t" = 5.2
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Figure 14. Constant Vorticity Contours of the Wake Flow Field Behind a Circular

Cylinder; a) t" = 2.2; b) t" = 3.2; c) t" = 4.2; d) t" = 5.2
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superposed on the velocity data of Figure 13. 2'his is shown in Figure 15a-d,

where the vorticity is displayed by color coding each velocity vector. The color code

represents the vorticity level, the magnitude of which is given by the color bar on

the top of each figure. The red and blue colors represent the peak positive and

negative vorticity regions, respectively.

Analysis of these figures reveals some interesting features. Two primary regions

of high vorticity form at the rear of the cylinder, corresponding to the startup

vortices, while two secondary high vorticity regions are observed further outward.

This is especially clear in the vorticity contours shown in Figure 14. The primary

vorticity regions may possibly correspond to the "vorticity peak" reported by'

Bouard and Coutanceau (1980), whereas the secondary regions may be related to

the breakup of the feeding sheet as suggested by the flow visualization of Tietjens

(1970). Also, it is interesting to observe that the vorticity field (Figure 14) displays

earlier evidence of asymmetry than the velocity field (Figure 13).

Using the velocity data of Figure 13, global wake characteristics can also be

determined. One example is the growth in the size of the closed vortex region, or

wake bubble, with time. Figure 16 displays the development of the wake length,

measured in terms of the distance between the cylinder surface and the saddle

point (zero velocity) where the two counter-rotating wake vortices join. These

values, which are plotted in terms of the non-dimensional time, t', compare well

with available experimental data by Honji & Taneda (19G9) and numerical

predictions by Loc (1980) and van Dommelen (1981). It was observed that the

distance between the two twin vortices remained constant at a value of about

0.55D, where Dis the cylinder diameter, throughout the experiment. This is also

in good agreement with the observations reported by Honji & Taneda (1969).

6.2 Flow Past an Airfoil at Angle of Attack

The time-space development of the unsteady separated flow generated by an

NACA 0012 airfoil at an angle of attack of 30 deg. and started impulsively from

rest is studied in this section. The flow is created b v towing the airfoil in the same

towing tank as described in the previous sect.ion. The airfo!i chord is 60 mm and

was towed with a velocity of 22 mn'dsec. The corresponding Reynolds number was

1400. In order to record the time development of the flow field, the camera was

attached to the towing carriage and the frequency which the multiple exposures

were taken was set at 2 Hz. Typical multiple exposure photographs of this flow

are shown in Figure 17. The photographic arrangement was purpose]y adjusted

to enhance the view of the flow field on the upper surface of the airfoil rather than

to show the entire flow around the airfoil. Consequently, the details of the flow
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(a)
(b)

(c)
(d)

(e) (_)

Figure 17. Multiple Exposure Photographs of the Flow Over an Airfoil at Angle of"

Attac;:; a) t" = 0.68; b) t* = 1.02; c) t" = 2.02; d) t" = 3.02; e) t" = 4.02; f') t' = 4.85
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under the airfoil cannot be seen clearly in these photographs. These photographs

display the flow field from the leading edge of the airfoil to a downstream location

of about 1-1/2 chords. The quadruple exposures shown here increase the SNR

(signal-to-noiseratio) as well as the fringe visibilityand provide an excellent flow

visualization.

When the airfoil is at angles of attack of ten deg. or less, the flow is well behaved

and attached over the entire impulsive process. However, at larger angles of

attack (a ;_ 20 deg.), the flow separates on the upper surface of the airfoil and

generates large scale vortices. The photographs shown in Figure 17 reveal that

when the airfoil is first started, a vortex at the trailing edge, commonly referred to

as the "starting" vortex, is generated and is carried away from the body.

Concomitant with this is the generation of a separation bubble at the leading edge

of the airfoil. At a later time, the separation bubble grows into an isolated

primary vortex with secondary vortices following behind it. A similar type o/"

vortex structure was also observed in the flow behind a circular cylinder. This

multiple vortex structure continues to grow together and move along the upper

surface until it reaches the trailing edge. At this point the primary vortex

induces avortexat the trailing edge. At a later time the primary vortex abruptly

moves away from the surface of the airfoil leaving behind a vortex-sheet-like

structure. This vortex sheet rolls up into distinct vortices and the), grow in size

with time. During this process the trailing edge vortex also grows, creating a

verb' complex flow field. Close to the surface of the airfoil a small vortex remains

present for t* > 3.0. This vortex has the same sign as the trailing edge vortex. A

similar vortex structure was observed by He (1986), who call it an "induced vortex"

and associates it with the unsteady separation phenomenon.

Typical measurements of the instantaneous velocity field are shown in Figure 18.

The data are presented in a body-fixed reference frame. The starting vortex and

the initial separation bubble at the leading edge can be seen clearly at t" = 0.68. At

t" = 2.02 the primary vortex with the secondary vortices behind it can be seen. The

trailing edge vortex has just formed and is starting to move downstream at t" =

3.02. Also, at t'> 3, the vortex sheet structure described in the previous

paragraph can be seen. This structure may be attributed to the interference of tip

vorl.ices generated at the tips of the w,iz_g.

Two-dimensional computational results from random-walk vortex simulations of

the full Navier-Stokes equations are shown in Figure 19. The angle of attack and

the Reynolds number arc the same as those in the experiment. The streamline

pattern, along with vorticity, which is represented in bi_-mapped graphics as half
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t' - 2.02 t" • 3.02

t ° - q,02 t" = q.85

Figure 18. Instantaneous Velocity, Field ofthe Flow Over an Airfoil at Angle of"

Attack; a) t" = 0.68;b) t" = 1.02; c) t ° = 2.02; d) t ° = 3.02; e) t" = 4.02; f) t* = 4.88
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tones are shown in the figure. Except for the efl'ect of the finite aspect ratio of the

airfoil, the streamline patterns look very similar to the patterns observed in

Figure 17. To further evaluate these results, the locus of the primary vortex as it

develops in time is shown in Figure 20. The computational results agree we]]

with the experiment for t" _< 2. Beyond this time, it is expected that the

experimental flow field was influenced by the tip vortices, making she flow three

dimensional. The coefficients of lift and drag as obtained from the computations

are shown in Figure 21. As expected, the coefficient oflift increases with t" up to

a point where the primary vortex is attached to the upper surface. For later

times, where the primary vortex leaves the upper surface, the coefficient o£ lift

drops significantly.

6.3 Three-Dimensional Turbulent Jet Flow

The flow field considered is a three-dimensional incompressible jet of air issuing

from a rectangular nozzle of aspect ratio 4. The structure and development of

such a jet is markedly different from those issuing from two-dimensional or

axisymmetric nozzles, the focus of most previous investigations on turbulent jets

(e.g., I':rothapalli, BaganoIT., and Karamchcti, 1981). With Yenewed interest on

thrust vectoring and mixing devices, emphasis is now shifting to the study o£

three-dimensional nozzles. The structure and development of these jets contain

many interesting features and are yet to be thoroughly understood. One such

feature is She "cross-over" phenomenon, which is generally characterized by the

switching of the major and minor axes downstream of the nozzle exit. Recent

experiments, conducted by He and Gutmark, (1987) on low aspect ratio elliptic .jets

suggest that an initial instability process, which is accompanied by' large vortices,

mny influence the position of the cross-over point, and thus the development of the

jet. The example described here examined the structure and growth of the

mixing layer region of the jet. Additional details may be found in Lourenco and

t':rothapalli, (1988) and Lourenco, 1,h'othapalli, and Smith (1988).

A simple low speed air supply system was used to provide the airflow to a

cylindrical settling chamber 27 cm in length and 10 cm in diameter. A

honeycomb and a series of" screens at the inlet of the nozzle are used to further

reduce fiow disturbances. The cross section of the contraction changes from a

circular cross section, 10 cm in diameter, to a rectangular cross section, 3 em by

0.75 cm. The contraction contours in the two central planes were fifth-order

polynomials. Seeding of the jet was accomplished by, using a theatrical-type

smoke generator, which produces smoke particles in the sub-micron range.

Smoke and ambient air were mixed in a large settling tank and then supplied to
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the settling chamber of the jet using a small axial fan. A second smoke generator

of the same type was used to seed the outside ambient flow surrounding the jet. A

schematic of the arrangement is shown in Figure 22. The mean velocity at the exit

of the jet was 4.5 m/see. This resulted in a Reynolds number of 3600, based on the

hydraulic diameter (four times the nozzle area divided by the perimeter). Basing

the Reynolds number on the jet width (0.75 cm) gives a value of 2250, which may

be more appropriate when discussing the stability of the jet. The mean velocity

profile at the exit plane of the nozzle was flat with a laminar boundary layer at the

walls.

The laser light sheet was created with a frequency doubled, double-pulse Nd:Yag

laser, with a similar inverse telescope lens/cylindrical lens arrangement as

described in Section (3.1. The laser sheet was 60 mm wide and illuminated the

central plane through the small dimension of the nozzle (i.e., the X-Y plane in

Figure 22). Two laser pulses with a duration of 10 nsec and a separation of 50

microsec were used to create the specklegram. The pulse separation of 50

microsec is much smaller than any relevant time scale of the flow field and thus

the double exposure photograph truly represents a flow field at a given instant of

time. The velocity bias technique, described in Section 5, was used to resolve the

ambiguity of the velocity vector. A 35 mm camera was used to record the

specklegram, using Kodak TMAX 400 ASA film, which has good sensitivity at the

frequency of the illuminating laser light. Themagnificadon was 0.50.

Typical double-exposure photographs of the jet, taken at two different times, are

shown in Figure 23. These pictures display the flow field from the nozzle exit to

about eight jet widths downstream. The photographs were taken using the

velocity shift technique described in Section 5 and with external seeding of the

ambient medium. From these results, along with other pictures, several

observations can be made. The jet consists of three regions: the region in which,

the initial shear layer is unstable and rolls up into discrete vortices; an

interaction region in which the vortices pair with each other; and a region in

which the vortices break up into random, three-dimensional motion. In spite of

the relatively large aspect ratio of the nozzle exit (AR = 4), the rectangular jet

organizes itself into a structure similar to that of an axisymmetric jet, as shown

by Bouchard and Reynolds, (1982). The pairing process is also quite similar. In

this process, the trailing vortex catches up with the leading vortex, decreases in

size and passes through the leading vortex, which has slowed down and grown in

size. The vortex cores rotate around each other and ultimately merge, producing

a single vortex. A number of vortex pairings can occur before vortex breakdown

occurs. Figure 23b shows such a vortex pairing in progress. The physical
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Figure 22. Schematic of Three-Dimensional Jet Experiment
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FiEure 23. Instantaneous ]Double-Exposed pj)ol, ograph s of ti_e Cent.ra] Plane ofthe Jet
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Figure 23. Instantaneous Double-Exposed Photographs of the Central Plane of

the Jet (Concluded)
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re#ons where these phenomena t_{kes place overlap and depends on the phase of

the development of the jet. The jet Strouhal number, St (non-dimensional passage

frequency of the vortices prior to pairing), is given by St = fw/U, where f is the

passage frequency, w the nozzle width, and U is the mean exit velocity of the jet.

For this experiment, St is estimated to be about 0.7. This Strouhal number is close

to that measured for an axisymmetric jet by Becker and Massaro, (1968), at a

comparable Reynolds number. Examination of several photographs suggests that

the vortex breakdown enhances the mixing in the plane of the small dimension of

the nozzle. No increase in mixing was observed in the central plane containing

the long dimension of the nozzle.

The instantaneous velocity field, for two typical phases of the development of the

jet, arc shown in Figure 24. In this figure the velocity is given in the laboratory

reference frame; that is, the velocity bias has been removed. "]'he length of each

vector is directly proportional to the magnitude of the velocity. Because the

velocity gradients are largest in thc transverse direction, the velocity data were

acquired using a rectangular mesh with a mesh spacing of 2 mm in the jet axial

direction and 0.5 mm in the jet transverse direction. The velocity fields displayed

in Figure 24 describe in great detail all of the aforementioned re£gons of the jet

flow field, from the initial shear layers to regions with highly three-dimensional

motion. Such an accurate and detailed represent.arian of the flow field was a

consequence of" the use of the velocity bias technique _.ogether with judicious

management of the seeding.

Examination of these velocity fields further reinforces the previous analysis made

on the basis of the flow visualization pictures. The jet structure is further

enhanced by presenting the velocity field in a reference frame with a convection

velocity of the vortical structure, estimated at about 70 percent of the jet exit

velocity, as shown in Figure 25. In this reference frame, the large scale vortical

structures are clearly observed which shows the nature of the symmetric

instability. The instantaneous velocity profiles provide a unique means to quantify

the extent of the jet unsteadiness, the existence of the coherent motions, their

interactions, and subsequent generation of the random three-dimensional

motions. As an example, Figure 26 shows the instantaneous distribution of" the

axial centerline velocity along the jet axis obtained from the data of Figure 24. As

expected, the centerline velocity distribution is phase dependent and does not

display a monotonic behavior as commonly observed in mean velocity

distributions. The peaks and va]ieysin tl_is phase-dependent distribution are a

consequence of the vortex dynamics. Thus, a complete unders_.anding of the

structure and development of the jet must include a detailed stud), of the time

evolu6on of the whole flow field.
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7. Recent Developments

7.1 High-Speed Measurements

A recent study by Kompenhans and Hocker, (1988) has demonstrated conclusively

that PIV can be successfully applied to the study of high-speed flows. ]n their

experiment, a pair of Nd:Yag lasers were combined by means of polarizing

prisms. The schematic of this system is shown in Figure 27. Utilizing a digital

clock to control tt_e exact time delay between the two pulses, they studied the flow or

a ch'cutar jet at exit Mach number_ ranging from 0.1 to ahnost 1. The seeding

particles, created by injecting pressurized air into olive oil, were of the order of ]

pm in diameter. The flow facility consisted of a 15 mm diameter circular air jet, at

ambient temperature. The Reynolds number, based on jet diameter, ranged from

4x104 to3xl05. Both the jet flow and the ambient air outside the jet were seededm

order that the particle concentration in the shear layer region, where ambient air

is entrained into the jet, was sufficiently high to yie}d good results. The

multiple-exposure photographs were analyzed using the Young's fringes

technique.

7.2 Three-Dimensional Measurements

Until recently, applications of PlY have been limited to two-dimensional giows.

The physical limitation of the system is that the particle must be in the illuminated

sheet during both exposures. Any out-of-plane motion of particles into or out of

this sheet reduces {.he particle correlation and can result in a loss of the signal.

However, man)" flows of interest are three-dimensional and ways of extending PlY

to the study of such flows are of obvious interest. One such method, pioneered by

Riethmuller and his colleagues at the yon Karman Institute (VI{I), is described in

this section, which summarizes the work presented by Gauthier and Riethmuller

(1988).

The VKI method is a stereoscopic scheme in which the flow in the illuminated

plane is viewed from two different directions simultaneously. Thus, with this

technique measurements over a single plane are still made, but all three

components of velocity are obtained. The consLrain_ is tha_ the time delay between

exposures must be chosen such that the maximum particle motion normal to the

illuminat.ed plane is much less than the thickness of the sheet. With this scheme

it is often necessary to add a velocity bias to the particle images to keep them in the

range of the analysis system.

In the stereoscopic method tile flow is the flow is viewed from two different
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directions and the three velocity components are obtained from their projections

and the geometrical characteristics of the optical system. Two different

stereoscopic systems have been tried thus far by the Vl{I group, q'he first is called

an angular displacement method and is one in which the optical axes are not

perpendicular to the illuminated sheet but are inclined at an angle 13to the normal

to the sheet, as shown in Figure 28. To estimate the error in measuring the

displacement, GauthJer and }{iethmuller considered a displacement of 250 lain at

an ang)e ore to the illuminated plane, a magnification 0/'0.4 and a reso}ution of 2.5

pro. Results are shown in Figure 29. The error is minimized when the optical

axes are at an angle of 45 deg. to the illuminated plane, and for small values ore

(which can be obtained by superposing a velocity bias to the flow if necessary).

'rhe second stereoscopic scheme is referred to as the translation method and is

shown schematically in Figure 30. In this technique the optical axis of each

camera is perpendicular to the illuminated sheet and the distance between the two

axes provides the stereoscopic effects. The error associated with this method is

shown in Figure 31 for the same conditions as in Figure 29. Although the error

decreases with increasing distance between the two optical axes, so does the

overlap or common area recorded by the two cameras.

Gauthier and Riethmuller applied each of these methods to a simulated 3-D flow

by measuring the uniform flow in a rectangular duct (25x40 ram) with a laser

sheet at an angle of 20 deg. to the duct axis, as shown in Figure 32. The velocity

was 5 rrgs (no velocity bias was used), the magnification was 0.5, and the time

between exposures was 50 bts. The scatter in the out-of-plane displacement for the

two methods is shown in Figure 33. There is a large scatter of 32 deg. in the

measurements using the translation method, and a scatter of 8 deg. with the

angular displacement method. These results confirm the predicted errors in

Figures 29 and 31, whicL indicated better accuracy for the angu]ar displacement

method. These basic e×periments demonstrate the applicability of PI'V for the

instantaneous measurements of the three components of velocity in a plane of a

fluid flow.

7.3 Suggestions for Future Work

Although some success in demonstrating the applicability of this technique on

high-speed flows and three-dimensional flows has been demonstrated, much work

remains to be done. For example, application of PI\' to the study of
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Figure 28. Stereoscopic Angular Displacement Method, from GautbJer and

Riethmuller, (1988)
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Figure 30. Stereoscopic Translation Method, from Gauthier and Riethmuller,

(1988)
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three-dimensional flows with large velocity gradients, such as the tip vortex wake

behind an aircraft wing, will require much study. Also, the relationship between

the laser sheet thickness, the flow quantities (such as velocity, spatial resolution,

time and length scales), and the processing techniques needs additional stud)'.

Finally, the use of PIXY as a means to validate CFD (computational fluid dynamics)

codes is a fruit[u] area for further work.

8. Conclusions

The concept of Particle hnage Veloci,netry has been described and shown to be

applicable to the study of flows with vortical motions. At present, most of the work

in this field has been towards developing the technique itself, and very little has

been done in appl),ing this technique to fluid flows of research interest. Most of the

work to date has been limited to low speed, primarily two-dimensional flows,

although some research has been done to extend the technique to higher speeds

and all three dimensions. The use of dual systems (i.e., two lasers to study high

speed flows and two recording systems to stud), three-dimensional flows) looks

especially promising. These activities shou]d be continued. One area that has

received very little attention to date is an effort to increase the size of the viewing

area. Most research has been done on small, laboratory-type experiments and a

field in which PI_ 7 would prove especially useful is the stud)' of wind tunnel flows.

A means to measure three-dimensional, unsteady, vortical flow fields in wind

tunnels at high speed and high Reynolds number and on a re_ox_lar basis would

increase the productivity of these facilities by several orders of magnitude.
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Application of PIDV to the study of the temporal evolution

of the flow past a circular cylinder

By L. M. LOUREN_O AND A. KROTHAPALLI

THE FLORIDA STATE UNIVERSITY
FAMU/FSU College of Engineering

Dept. of Mechanical Engineering
Tallahassee, Florida 32306

A novel experimental technique is being developed for the field measurement
of instantaneous velocity in unsteady or steady fluid flows. The main advantage
of this technique is that the velocity field data is measured with sufficient
accuracy so that the distribution of vorticity can be calculated with reasonable
accuracy.

This technique which is ideally suited for the stud)' of unsteady vortical
flows, has been utilized to measure the time development of the near-wake flow
field crea_ed behind a circular cylinder impulsively started from rest.

A detailed explanation of the basic principles of the technique as well as a
discussion of some of the importan: parameters that affect its use are included
in this paper.

1. Introduction

One of the most challenging problems in experimental fluid mechanics
remains the measurement of unsteady vorticity field and associated physical
variables such as velocity and pressure. Local measurements of the velocity field
are now done routinely' in man), experiments. However, a great deal of flow fields
of current interest, such as coherent structures in shear flows are highly unsteady.
Hot-wire or laser doppler velocimeter data of such flows are difficult to interpret
as both spatial and temporal information of the entire flow field are required,
and these methods are commonly limited to simultaneous measurements at only'
a few spatial locations. Recently, a novel velocity measurement technique,
commonly known as Laser Speckle or Particle Image Displacement Velocimetry
has become available (Adrian & Yao (1985), Lourenco & Whiffen (1984),
Meynart (1980), Simpkins & Dudderar (1978). This technique provides the
simultaneous visualization of the two-dimensional streamline pattern in unsteady
flows as well as the quantification of the velocity field over an entire plane.
The advantage of this technique is that the velocity field can be measured over
an entire plane of the flow field simultaneously, with accuracy and spatial
resolution. From this, the instantaneous vorticity field can be easily obtained.
This constitutes a great asset for the study' of a variety of flows that evolve
stochastically' in both space and time. In this paper some of the results obtained
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in a measurement of the time-space development of the near-wake of an impul-
sive] 3 started circular cylinder are presented. In addition, the basic principles
of operation of LSV or PIDV are introduced and a discussion is made on some
of the parameters that affect its utilization.

2. Principle of the iechnique

The application of LSV or PIDV to fluid flow measurement invoh, es several
steps. First, it is necessary to _<create>, a selected plane or surface within the flow
field. This is accomplished by seeding the flow with small tracer particles,
similarly to LDV applications, and illuminating it with a sheet of coherent light,
as shown in figure 1. A pulsed laser such as a Ruby or a NdYag laser, or a CW

LASER

I
I
I
I
I
I

!.;i

LASER
SEEDED

SHEET
FLOW

CYLINDRICAL

LENS

TEST SECTION

u..

IMAGING

LENS

PHOTOGRAPHIC

PLANE

FIGURE l. Schematic of the sel up for photograph?'.

laser with a shutter is normally used as the light source. The laser sheet is
formed, for example, by focusing the laser beam first with a long focal length
spherical lens, to obtain minimum thickness, and then diverging the beam in
one dimension with a cylindrical ]ens. The light scattered by the seeding particles
in the illuminated plane provides a moving pattern. When the seeding concen-
tration is low, the pattern consists of resolved diffraction limited images of the
particles. When their concentration increases, the images overlap and interfere
to produce a random speckle pattern. A multiple exposure photograph records
this moving pattern. The lower particle concentration is a mode of operation of
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thetechniquereferredto asParticleImageDisplacementVelocimetry,reserving
the term Laser Speckle Ve]ocimetry for the high particle concentration levels
where a random speckle pattern is actually formed. In a second step the local
fluid velocity' is derived from the ratio of the measured spacing between the
images of the same tracer, or speckle grain, and the lime between exposures.

Several methods exist to convert the information contained in the multiple-
exposed photograph, or specklegram, to flow field data such as velocity or
vorticity. The recorded image, whether formed by isolated disks, in the case of
low particle concentration, or speckle grains for high particle concentration is a

complicated random pattern. It would be very difficult to measure lhe local
displacements by visual or computer-aided inspection. However, it is important
to realize that the multiple exposure photograph results in a periodic random
image from which the periodicity information can be retrieved using Fourier
or Autocorrelation analysis. Basically, the multiple-exposed photographs or
_pecklegrams can be analyzed either on a point-by-point basis, which yields
measurements of the local displacements (velocity), (Adrian & Yao (1985),
Louren.¢o & Whiffen (1984)) or with a whole field filtering technique, which
yields isovelocity con:ours Meynart (1980). Recently an anamorphic optical
system has been proposed Collicott & Hesselink (1985). This method performs

a I-D Fourier transform in the x-direction for measurin G the x-velocity compo-
nent. and images the speckle pattern in the y-direction. This results in curved
fringes which have a local spacing inversely proportional to the x-velocity at
that point. SimuJtaneous multiple point measurements are obtained by imaging
in the y-direction. Thus it is possible to measure a velocity component along a
selected line in the flow. The most current methods of analysis are point-hypoint
techniques. The first one which is being developed and used by Yao & Adrian
(1984), consists of measuring directly the image pair spacings in the photographs,
using an autocorrelation technique. However, unlike the usual full 2-D auto-
correlation or Fourier techniques which require a compmation of large data arrays
and are generally" inefficient, this melhod reduces the general N ×N element 2-D

laroblem to two N element I-D prob]em by compressing the information, in the
l_hotograph, in orthogonal directions using integration. The other method, which
l_as been selected and implemented by the Fluid Mechanics Research Laboratory
at the Florida State University, is the Young's fringes method Lourengo & Whiffen
(1984). The local displacement is determined using an focused laser beam to
interrogate a small area of the multiple exposed photograph transparency. The
diffraction produced by coherent illumination of the multiple images in the
negative generates Young's fringes, in the Fourier plane of a lens, provided that
the particle images correlate. This is shown schematically in figure 2. These
tringes have an orientation which is perpendicular to the direction of the local
displacement and a spacing inversely proportional to the displacement. The use
of Young's fringes eliminates the difficulties of finding the indviidual image
l_airs in the photograph. The basis of the Young's fringe method can be described
as in the following.

Consider the function D(r } describing the light intensity in the image plane

of a photographic camera, where r (x. y) are the plane coordinates. Considering
that there is an in-the-plane displacement dv of the scatterers, the image wit1 be
translated by Mdy, where M is the magnii-ication of the camera lens, ancl the
resulting intensity distribution is

l)(.x,y) + D(x,y+Mdy) = D(x,y) ® [8(x,y)+8(x,y+Mdy)] (1)

where 8(x,y) is the Dirac delta function centered on r(x.y), and considering
that a translation can be represented as a convolution with a delta function.
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The total intensityis recordedon photographicplate.After developmentthe
transmittance,% of the negative is given by

":(r) = a+bD(x,y) ® [3(x,y)+_(x,y+Mdy)] (2)

where a and b are characteristic constants of the photographic emulsion. Local
analysis of the film negative with a probe laser beam, figure 2, produces in the

Film
He Ne Laser

Image Plane

F1GURE 2.

Fourier Plane

Schematic of the set up for obtaining Young's fringes.

far field an optical two-dimensional Fourier transform of the transmittance
distribution, with an intensity distribution as follows:

2'. (u, v) = a_(u, v) + bD(u, v) [1 +exp(i2r, vMdy/_.,] (3)

where _ represents the Fourier transform of ":, u and v are the angular coordi-
nates of a point in the Fourier plane, x_ is the wavelength of the interrogating
laser light beam. The first term, _(u, v) on the r.b.s, of equation represents the
image of a point source, i.e. the interrogating beam, when diffraction effects are
neglected. This image is seen as a small bright spot in the center of the Fourier

plane. The second term is composed by a fine speckle structure D modulated by

[ 1+ exp(i2_vMdy/_.,] (4)

The intensity distribution for the second term is obtained by multiplication
with its complex conjugate, resulting in

'D(u, v) i: [4cos: (=vMdy/X_)? (5)
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The diffuse background, ]D:, called ,,diffraction halos> is modulated by a
set of Young's fringes whouse spacing is given by

dF --
X_ fL (6)

Mdy

where fL is the focal length of the converging lens. Knowing M, fL,_., and
measuring dF the displacement dy is easily found from equation (6), with the
direction of motion perpendicular to the orientation of the fringes.

By scanning the double exposed photograph one can resolve the two compo-
nents of the velocity vector at every point of the field. This is a unique feature
of this technique.

3. Limitations of the laser speckle mode

The Laser Speckle mode of operation relies upon identical, laterally shifted
speckle patterns. Slight out-of-plane motion of the scatterers, due to three-dimen-
sional motions in the flow, will result in speckle patterns that are not entirely
similar. As a consequence, the correlation between patterns decreases and the
fringe pattern, produced by local coherent illumination, is suppressed or elimi-
nated. This poses a severe limitation in the use of the Laser Speckle mode for
the study of turbulent flows or flows with a significant velocity component in
the direction perpendicular to the laser sheet. However. the fringe quality is
less dependent on the out-of-plane motion in the Particle Image mode of opera-
tion. In this case the tolerance to out-of-plane motion is roughly equivalent to
the width of the illumination sheet and depth of field of the recording optics.
For this reason we use almost exclusively the Particle linage mode of operation.

An additional disadvantage with speckle mode of operation is that the seeding
in large scale flows or high speed flows can become exceedingly difficult and
expensive as the required concentration increases. Finally, the high concentrations
of tracer particles required by the Laser Speckle mode may influence or distort
the flow field being studied.

4. Experimental facilities and procedures

The time-space development of the near-wake flow behind a circular cylinder
impulsively accelerated to constant velocity were examined using Particle Displa-
cement Velocimetry. The flow is created by towing the circular cylinder in the
reduced scale Fluid Mechanics Research I'.aboratory towing tank facility. The
tank is 500 ×200× 600 ram. A detailed examination showed that the motion of

the towing carriage is smooth and vibration free. The towing carriage is driven
bv a variable D.C. motor, and the towing velocity can vary from 0 to 100 ram/see.

For the photography, a 55 mm camera (Nikon F-5) is used. To photograph the
flow at regular time intervals, the photographic camera has a electric winding
device. The photographic time interval available with this camera can be conti-
nuously varied up to a maximum of 6 frames per second. Two options are
availat_le to fix the camera: one by attaching it Io the towing carriage, which
means an observation point fixed in relation to the model, and the other by
attaching it to the frame of the water tank, which means an observation point
fixed in relation to the fluid. The selection of these two depends upon the flow

field being photographed.
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In this experimentthe circularcylinderis 25.4 mm in diameter and is
towed with a velocity of 22 mm/sec. The corresponding Reynolds number was
550. The fluid used in this experiment was water seeded with 4 _m metallic
coated particles (TSI model 10087). For the illumination, a laser beam from a
5 Watt Argon-lon Laser (Spectra-Physics series 2000) is steered and focused to
a diameter of 3 mm using an inverse telescope lens arrangement. A cylindrical
lens, with a focal length of --6.34 mm, is used to diverge the focused beam in
one dimension, creating a light sheet. The laser sheet is 70 mm wide and illumi-
nates the mid-span section of the cylinder. For the multiple exposure, the CW
laser beam is modulated using a Bragg cell. In this experiment, the laser power
density, I_, of the sheet was .27 W/mm -_.In order to record the time development
of the flow field, the camera was attached to the towing carriage and the
frequency of which the multiple exposures were taken was set at 1.7 Hz. The
aperture of the lens with a focal length of 50 mm and a spacer of 12 ram, was
set at F # 5.6 and the resulting magnification factor was 0.40. For the multiple
exposure, the time between exposures, T, and the exposure lime, t, are chosen
according to the criteria discussed in Lou]'enco & Krothapalli (1986), Louren_o
& Whiffen (1984). The frequency of exposures was optimized to achieve the
largest dynamic range, and was 30 m sec. For optimum exposure, the exposure
time was 3 msec, which corresponded roughly to (dJMVmax), where D is the
analyzing beana diameter, \r is the maximum expected velocity in the field and
d, is the particle image diameter expressed in terms of

1

d, = (d_ + d_)' (7)

with dr, the particle diameter and d, the edge spread caused by the limited
response of the recording optics Adrian & Yao (1985). The exposure time and
the time between exposures together with the particle image size diameter
determine ttae technique's velocity dynamic range, defined as the largest velocity
difference that can be detected in the flow field as follows Lourenco (1986).

(Vm,, -- \'=i,) / \'=i, = [(D--2di) / 2Mdi] - 1 : 6 (8)

5. Results

]n this experiment the flow was captured at several stages of its development
corresponding to t_ =0.6, 1.2, 1.8.2.2, 2.8.3.2.3.8, 4.2, 4.9, 5.2. with t*=tU/D.
the non-dimensional _ime, w2_ere t is the time from startup, U is the free stream
velocity and D is the cylinder diameter. Figure 3 a-d are typical triple exposed
photographs of the flow field. As shown (Louren¢o 1986), the triple exposed
photograph increase the SNR and fringe visibility. The veiocity da:a is acquired
in a square mesh by digital processing of the Young's fringes, produced by
point-by-point scanning of the positive contact cop3' of the photograph (Lourence
1986). The scanning step size and the dinaension of the analyzing beam are
0.5 ram. which corresponds to a spatial resolution of about 1.25 mm in the
object plane or about 1/20 diameter of the cylinder. The fringes were processed
using the methods described in the following paragraph. The resultant two-
-dimensional velocity fields, corresponding in figures 5a-d are shown in figures
4a-d, are a good representation of the expected flow pattern. The length of each
vector is proportional to the local velocity at the point.
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(c)

(d)

FIGURE 3. Tripie exposed photographs of tiae wake fiow f:,eld; _ t_=2.2: b) t"=3.2;
c) 1_=4.2; d) ,*':'=5.2.
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FIGURE 4. Instantaneous vetociL v field: a) t'=2.2: b) t*=5.2;

c) _'=4.2; d) t'=5.2.
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Usingthe velocitydata,globalwake characteristicssuchasthe bubble
sizedevelopmentversustimeweredetermined.Figure5displaysthedevelopment
of the wake length, measured in terms of the distance between the cylinder
surface and the saddle point (zero velocity) where the two counterrotating wake
vortices join. These values which are plotted in terms of the non-dimensional
time compare wel] with availab}e experimental data by Honji & Taneda (1969)

and numerical predictions by Loc (1980) and L. van Dommelen (1981). It was
observed that the distance between the _wo twin vortices remained constant at

a value of about 0.55 D throughout the experinaent. This is also in good agreement
with the observations reporled by Hon.ii & Taneda (1969).

L

D

2.0

_5

_.O

05

O 1

O 6

C) Present Results

0 Loc (Ig80)

z% Tar_ec_a(1969) C.y/"

• L. Van C_mmelen (1981) i_

/

i I I ] . I

1 2 3 ,4 5

t,=tu
D

FIGURE 5. Development of the wake size ,s,i_h time.

Because of the high spatial resolution of these data, vorticity contours can
be derived by taking spatial derivatives. Letting each grid location be labeled
with indices i, j, the vorticity componem at location (i, j) is

\'i+l,.i -- V_-,. i Ui+_. i-- U_-Ui.i}.-,,:: h ' (9)
2 2 _v

where ._x and av are the mesh intervals in the stream wise and cross-stream
directions, respectively. Figures 6a-d show these smoothed vorticity contours,
normalized with respect to the free stream velocity and cylinder diameter.
Analysis of ti_ese figures togefl_er with the velocity field (figures 4a-d) reveals
some interesting features.
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Re= 550

tl= 2.2

-3.o< _ <3.0

(a)

Re=550

, _,.._ 3.2

-3.o< f2<3o

172

(b)



Re : 550

t':/.,.2

-3.o < [l <so

(c)

Re=550

t*= 5.2

Constant ,,,or_icitv comours: a) !'=2.2, b) t"=3.2; c) t'=4.2;
" d) t _ =5"2'
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Two primary regions of high vorticity form at the rear of the cylinder
corresponding to the startup vortices, "while two secondar7 high vorticity regions
are observed further outward. The primary vorticiD' regions may possibly
correspond to the <<vorticity peak>> reported by Bouard & Coutanceau (1980)
whereas the secondary regions may be related to the breakup of the feeding
sheet as suggested by the flow visualizations of Tietjens (1979). ]t is interesting
to observe that the vorticity field displays earlier evidence of asymmet_' than
the streamline (velociD') picture.

6. Data processing

The fringe images were acquired and analyzed using the digital image
analysis system of the Florida State University I_MRL (figure 7). This system
consists of the following components: a DEC LS]-ll/75 host computer, Gould

L1 L2

,I.

t-,--:-....L....... t
P "i- ....... "'=--i

L3

PDP } Gould}11-73 IP-8500

FIGURE 7. Young's fringe analysis set up.

1P-8500 Digital image processor which includes four memory tiles for storage
of image data in a 5t2×512 formal with a resolution of 8 bit per pixel, a frame
digitizer, a pipeline processor and a video output controller to convert digital to
analog information for display on a color monitor. The system also includes a
two-dimensional Klinger traversing mechanism with a controller for the purpose
of automatically scanning the film transparencies. Two methods are available
and used for fringe analysis (Louren_c,o & Whiffen 1984). The first one is an
interactive method in the sense that it requires the assistance of an operator.
The principle of the method consists of first obtaining a 1-D periodic signal
from the straight fringes. This is performed by determining the fringe angle in
relation to a pre-determined reference followed by an averaging of the lines of
the digitized picture as follows:

511
f(m) = Z I [m+(n--255) tanc'..n] 0<m<5il (10)

n=0

where Jim, n) represents the digitized picture, tim) is the resulting periodic
signal and is the angle of the fringes with the n axis.

The extraction of the frequency from this signal is straightforward. The
Fourier transform of f(m) displaying a peak at the frequency proportional to
the velocity component parallel to the m axis. However, due to low frequency
modulation of the fringes, which is a consequence of the non-uniform light
intensity distribution in the diffraction halo, it is sometimes difficult to identify
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thispeak,especiallyif thefringeshavelow frequency.In orderto removethis
modulation,tile fringesignalis passedthrougha highpassfilter beforepro-
cessing.

Theadvantageof theone-dimensionalaveragingtechniqueis rapidity.The
computation,whichinc)udesthedeterminationof thefringeangleby"theoperator
andpositionupdatingof thefilm transparencyscanningmechanism,iscompleted
in a few seconds,typically7-8sec,usingthePDP11-75computer.

The inconvenienceof the one-dimensionalaveragingmethodis the need
for an externaladjustmentof the angleof the fringesbv an operator.This
problemcanbeby passedby computingthevelocitycomponentsalongindepen-
dentdirections.Becauseeachline of the fringeframecanbe consideredasa
noisyperiodicsignalwith variablephase,the automaticdeterminationof a
velocitycomponentcanbe performedonly by averagingovera quantityinde-
pendentof thephase.Theautocorrelationfor eachlineor its Fouriertransform
for the powerspectrumsatisfiesthis requirement.Them velocitycomponent
canbecomputedfrom:

I Y-q. [I(m,n)I(m+u,n)] l

511 m

g(u) = 72 • --511<u<511 (11)
n=0 _[](m, n)]:

m

This algorithm has been implemented using the pipeline processor of the
Gould IP-8500 image processor to perform simultaneously the autocorrelation
for all the lines of a fi'ame. For an accurate estimate of the velocity magnitude
and directions, four of such full image oeerafions, yielding four autocorrelation
functions, are required. From these the velocity vector is determined by selecting
the values of tile components which have been comt_uted from autocorrelations
having the highest SNR, and visibility. In our configuration, the determination
of the ve]ocity vector requires 4-5 seconds.

A shortcoming of the autocorrelation technique is the difficulty to measure
the velocity when tile fringe density, is too low (less than five bright fringes.
including the central one). In this case. the velocity can often be eva]uated by
the interactive one-dimensional averaging method. So, the two methods are
complementary.

7. Overall accuracy of the technique

The overall accuracy of the technique is evaluated using the following
method. A uniform flow field is created by producing a muhipie exposure photo-
graph of the still seeded water, in the water tank. with a camera moving a',
constant speed. For the muhiDle exposure photograph a number of time between
exposures are used. thus resuhine_, in Naotographs with particle _airs at different
known distances. The range of time between exposures at ",yell as the distance
between corresponding particle images in the film. plane are presented in Table 1.
A ]a:'ge number of points (100) ofthese _hotom'ar_hs (5) are ana)yzed usin_ the
methods described in Section 5, in order to obtain statistical information about

experimental errors. These uncertainties include error introduced during the
recording of the mu]tinte exposure ohoto-_raph, such as _he ones introduced by
distortion of the scene bein_ recorded by *he camera lens. limited film resolution,

and inaccuracies due to the processin_ algorithms.
In the absence of a systematic bias, the standard deviation of the obtained

_.he film transparencies usin8 the two techniques vie1& the same mean value
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velocity distribution is an estimate of the mean measurement error. Analysis of

with a nearly equal standard deviation (Table 1). The values in Table ] indicate

that using these methods, inaccuracies of the order of 1-2 % are expected. It is

believed that these inaccuracies are due to a combination of the limited resoh, ing

TIME BE"I_'EEN FRINGE RMS FRINGE MEASURED

EXPOSURES (MSEC_ FREQUENCY FREQUENC'Y DISTANCE (uM)

22.2 53.447 0.257 194

25.0 37.045 0.205 218

28.6 42.950 0.381 249

33.3 49.037 0.710 291

40.0 60.693 1.190 550

TABLE 1

power of film using for recording (100 ]ines/min) and limited response of the

camera lens. Another source of error which is not accounted for in this analysis

is the one due in the spurious contributions on the in-plane displacement record-

ing by the out-of-plane motions (Lourenco & Whiffen 1984, Louren9o 1986).

8. Conclusions

A technique for laser speckle velocimetrv has been briefly described. Measu-

rements of the early near-wake developmem behind a impulsively stained circular

cylinder, have been reported, which illusu'ated the ability of the to record,

unsteady flows with accuracy.

The technique has been shown to provide both f]ow visualization and

quantitative measurements, which include the velocity and vorticitv fields.

This work is supported by NASA Ames Research Center under Oran',

No. NAG-2-514.
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Particle image displacement velocimetry measurements
of a three-dimensional jet
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A whole field experimental technique, commonly referred to as particle image displacement
velocimetry (PIDV), is used for the measurement of the instantaneous two-dimensional

velocity fields in the transition region of a three-dimensional jet issuing from a rectangular

nozzle with aspect ratio 4. The experiments were performed using an air jet at a Reynolds

number based on the hydraulic diameter of 3600. The rotlup of the laminar shear layer into
vortices and their subsequent interactions are examined.

Particle image displacement velocimetry (PIDV) is an

attractive experimental technique for the nonintrusive mea-

surement of two-dimensional velocity fields in free shear lay-

ers dominated by quasideterministic large structures. It pro-
vides an instantaneous velocity field measurement capability

with good spatial resolution, from which the vorticity field

can be computed accurately.

Earlier investigations 1'2 have been carried out using a

technique similar to PIDV to study the mixing region of an

axisymmetricjet. However, as a result of the limited dynam-

ic range in the velocity measurements j or limited spatial cov-

erage of the flow field," a number of important features of the

vortical structures could not be obtained. The purpose of this
Letter is to establish the validity and attractiveness of the

PIDV technique for accurate measurements of the instanta-

neous two-dimensional velocity field in a three-dimensional,

time dependent, vortical, and entraining flow.
The flow field considered is a three-dimensional incom-

pressible jet of air issuing from a rectangular nozzle of aspect

ratio 4. The structure and development of such a jet is mark-
edly different from those issuing from two-dimensional and

axisymmetric nozzles? One of the interesting features is the

"crossover" phenomenon, which is generally characterized

by the switching of the major and minor axes downstream of

the nozzle exit. The physical mechanism of this phenome-

non is not well understood. Recent experiments on low-as-

pect-ratio elliptic jets 4 suggest that an initial instability pro-

cess may influence the position of the crossover point and

thus the development of the jet. With this in mind, the pres-

ent investigation focuses on studying the structure and

growth of the mixing layer region of the jet.

A brief description of the particle image displacement
velocimetry technique is given here, however, for more de-

tails see Refs. 5 and 6. The PIDV measurements of fluid

flows can be described as follows: A selected cross section of

the flow is illuminated by a sheet of coherent light. A pulsed

laser such as a Nd:Yag laser, is normally used as the light

source. The laser sheet is formed by focusing the laser beam
with a spherical lens of long focal length followed by a one-

dimensional expansion using a cylindrical lens. Within the

illuminated sheet, the flow is made visible through small

tracer particles seeded within the fluid. The illuminated par-
ticles generate resolved diffraction limited images recorded

in a multiple exposure photograph. The spacing between the

images of the same tracer provides a measure of the local
flow velocity.

To determine this spacing, a Fourier analysis is used. A
focused laser beam is used to interrogate a small area of the

multiple exposure photograph transparency. The diffraction

produced by coherent illumination of the multiple images in
the film transparency generates Young's fringes. The fringes
are oriented perpendicular to the direction of the local dis-

placement and their spacing is inversely proportional to the

magnitude of the displacement. The use of Young's fringes

avoids the difficulty of locating individual image pairs in the
photograph.

In this method, the sign of the velocity cannot be deter-

mined. 7 A method to resolve this ambiguity, as well as to

improve the technique's capabilities to measure large veloc-

ity gradients, is incorporated in this experiment. This meth-

od, 7'2 commonly known as the "velocity bias technique,"

consists of recording the flow field in a moving reference

frame, thus superposing a known velocity bias to the actual

flow velocity. This effect may be accomplished in several

ways, Slach as using a moving camera during the photo-

graphic recording or by optical means using scanning or ro-

1835 Phys. Fluids 31 (7), July 1988 0031-9171/88/071835-03501 90 _) 1988 American Institute of Physics 1835

PRECED;F,_G PAGE BLA,'K NOT FILMED



tating mirrors• For the data presented here, a scanning mir-

ror is used to displace the image during the photographic
recording.

A simple low speed air supply system was used to flow
air into a cylindrical settling chamber 27 cm in length and I0

cm in diameter. A honeycomb and a series of screens at the
inlet of the nozzle are used to further reduce flow distur-

bances. The cross-section area of the contraction changes

gradually from a circular cross section, 10 cm in diameter, to

a rectangular nozzle. The long dimension and the short di-

mension of the rectangular nozzle are, respectively, 3 cm and
0,75 cm and the streamwise contours of the contraction for

the two central planes are fifth-order polynomials. In order

to obtain appropriate jet seeding, smoke particles in the sub-

micron range are produced using a Rosco-type 1500 smoke

generator. The smoke and ambient air are mixed in a large

cylindrical settling tank (100 cm in length and 45 cm in

diameter). The air-smoke mixture is then supplied to the

settling chamber of the jet using a small axial fan. A second

smoke generator of the same type is used to seed the outside

ambient fluid surrounding the jet.
A mean velocity of 4.5 m/sec is maintained at the exit

p[ane of the nozzle; the mean velocity profile at the exit plane

is flat with a laminar boundary layer at the walls. The Reyn-
olds numbers based on the hydraulic diameter and the small

dimension of the nozzle are, respectively, 3600 and 2250.

For the illumination, a laser beam from a frequency-

doubled, double-pulsed Nd:Yag laser (Spectra-Physics
model DCR-I 1 ) is steered and focused to a diameter of 0.3

mm using an inverse telescope lens arrangement. A cylindri-

cal lens with a focal length of -- 24.5 mm diverges the fo-

cused beam one dimensionally, creating the light sheet. The

laser sheet is 45 mm wide and illuminates the central plane

through the small dimension of the nozzle. A 35 mm camera
(Nikon F-3) with a 150 mm macro lens loaded with

400ASA KODAK TMAX film, a film with good sensitivity

at the laser light frequency, is used for the photographic re-

cording. The lens aperture is set at f/5.6 and the magnifica-

tion is 0.5. Two laser pulses with a duration of I0 nsec and a

separation of 50 #sec are used for the double exposure re-
cording. In this mode, the laser delivered a 15 m J/pulse of

light at the 0.532 nm wavelength. The pulse separation of S0

,usec is much smaller than any relevant time scale of the flow

field, thus the double exposure photograph truly represents a

flow field at a given instant of time.

The analysis of the photograph was performed by means
of an integrated image analysis system based on a Gould IP-

8500 digital image processor controlled by a/zVAX II. The

system also includes a computer controlled scanning mecha-

nism for updating the position of the film transparency. The

algorithm used to determine the velocity vector is discussed

in Ref. 5, and its accuracy is estimated at 1% or better.

Typical double exposure photographs of the jet in the
central plane through the small dimension of the nozzle, for

two different times are shown in Fig. 1. These pictures dis-

play the flow field from the nozzle exit to a downstream

location of about eight widths. The photographs were taken

using the velocity shift and external seeding of the ambient

medium. From these and other flow visualization pictures,

(a]

_-- _- - - ,. _'.-'.2 _-'-X_:.*-.-:_'_ -

f ............

(b)

FIG. 1. Instantaneous double exposure photographs of the central plane,

containing the small dimension of the jet, and superposed with the jet cen-

terline velocity distribution.

the following observations were made. The jet consists of

three regions: the region in which the initial shear layer is

unstable and rolls up into discrete vortices; an interaction

region in which the vortices pair with each other; and a re-
gion in which the vortices break up into random, three-di-

mensional motion. In spite of the relatively large aspect ratio

of the nozzle exit (AR = 4), the rectangular .jet organizes

itself into a structure similar to that of an axisymmetric jet. _

The pairing process is also quite similar. In this process, the

trailing vortex catches up with the leading vortex, decreases

in size, and passes through the leading vortex, which has
slowed down and grown in size. The vortex cores rotate

around each other and ultimately merge, producing a single

vortex. A number of vortex pairings can occur before the

vortex becomes three dimensional. The physical regions

where these phenomena take place overlap and depend on

the phase of the development of the jet. Strong accelerations

and decelerations exhibited by the large scale vortical struc-
tures can be observed when the instantaneous axial center-

line velocity distribution normalized with the jet's axial exit

velocity is superimposed on the photographs (Fig. 1). The

nondimensional passage frequency of the vortices before

pairing is estimated to be about St,,, = 0.7, where Stw is the
Strouhal number based on the nozzle width to and the mean

exit velocity U of the jet, i.e., Stw =fw/U. This Strouhai

number is close to that of an axisymmetric jet, 9at a compara-

ble Reynolds number. Examination of several photographs
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FIG. 2. Instantaneous two-dimensional velocity fields shown in the labora-
tory reference frame.
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FIG. 3. Instantaneous two-dimensional velocity field shown in a reference
frame moving with the convection veloci.ty of the vortical structures.

suggests that the vortex breakdown leads to the larger

spreading rate of the jet. The increased three-dimensionality

enhances the mixing in the plane of the small dimension of

the nozzle. No increase in mixing was observed in the central

plane containing the long dimension of the nozzle.

For two typical phases in the development of the jet,

shown as the double exposed photographs in Fig. 1, the in-

stantaneous velocity fields were obtained. The results after

removal of the velocity bias (i.e,, in the laboratory reference

frame) are shown as a series of uniformly scaled velocity

vectors in Fig. 2. Because the velocity gradients are largest in

the transverse direction, the velocity data were acquired us-

ing a rectangular mesh with a mesh spacing of 2 mm in the jet

axial direction and 0.5 mm in the jet transverse direction.

The velocity field displayed in Fig. 2, represents, with great

fidelity, all the aforementioned regions of the flow field.

These include the shear layers and regions with strongly

three-dimensional motion. Such an accurate representation

of the flow field was a consequence of our use of the velocity

bias technique and the judicious management of the flow

seeding procedure.

Examination of the obtained velocity fields confirms

our previous analysis based on the flow visualization pic-

tures. The jet structure can be further illuminated when the

velocity field is presented in a reference frame moving with

the convection velocity of the vortical structure, estimated to

be 60% of the jet exit velocity (Fig. 3). In this reference

frame, the large scale vortical structures, as well as the na-

ture of the symmetric instability, are clearly observed. The

instantaneous velocity profiles provide a unique means to

quantify the extent of the jet unsteadiness, the existence of

the coherent structures, their interactions, and subsequent

generation of random three-dimensional motions.

A successful application of PIDV to study a time depen-

dent, vortical, entraining, and three-dimensional flow field is

reported. The data acquired provided quantitative and flow

visualization information that revealed the nature of the in-

stability process that occurs in the initial region of the jet.

This process is consistent with previously observed features

of axisymmetric jets. Furthermore, new and important

quantitative information was obtained which is essential for

a deeper understanding of this complex flow field.
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Abstract

This paper describes an experimental investigation of the large scale vortical struc-

tures in the transition region of a rectangular jet of aspect ratio 4 at a Reynolds number,

based on the equivalent diameter, of 4500. The instantaneous two dimensional flow for

the first 4 equivalent diameters in the jet was measured using the Particle Image Dis-

placement Velocimetry technique. This technique provides an instantaneous velocity

field measurement capability with good spatial resolution, from which the vorticity field

can be computed accurately. The kinematics of the vortex interaction process are de-

scribed in terms of the formation and evolution of coherent-vorticity distributions. An

important observation is that the interaction process of cylindrical vortices is not unique

and consists of several different events. The paper describes two of such processes which

are typical of rectangular jets.

1. Introduction

Since the clear and vivid experiments of Brown 1, the presence of large scale vorti-

cal structures in the transition region of jets have been recognized to play a significant

role in the downstream development of a jet. There have been several review articles

describing the nature of these structures and their relevance to the overall understand-

ing of the turbulence, and the most recent and comprehensive of these is given by

Hussain 2. Because of their simple geometry, most previous investigators have focused

their attention in understanding the transition region of either an axisymmetric jet (eg.

Becker and Massaro 3) or a two-dimensional jet (eg. Rockwell and Niccolls 4) . More re-

cently_ Ho and Gutmark 5 and HussaJn and Husain 6 have studied jets exiting from low

aspect ratio elliptic nozzles. These studies provided better understanding of the nature

of the mixing processes that takes place in an elliptic jet. The role of large vortical

structures on the deformation (cross-over phenomenon) of a rectangular jet was con-

vinsingly pointed out by Abramovitch v. In the present investigation, we attempted

to study the transition region of a rectangular jet with a relatively new experimental

technique commonly known as Particle Image Displacement Velocimetry (PIDV). This

technique will provide the instaa]taneous velocity field in a selected plane of the flow

field with sufficient accuracy to obtain the vorticity field. The transition region of a jet

is best characterized by the stud)' of the instantaneous flow, with the hope that a more

detailed knowledge may lead to some ability to control its characteristics.

.



In the past, many researchers have attempted to identify, by flow visualization

and conditionally sampled statistical measurements, typical kinematic features of the

instantaneous flow. Such an approach, although will yield useful information in flows

which are typically two dimensional and have a dominant frequency at which many

of the significant events take place, may prove to be difficult to implement in three

dimensional jets. Here, with the use of the PIDV technique, the study of the vortex

dynamics, especially in the region where large scale structures are present, is made

much simpler with the measurement of instantaneous vorticity. A brief description of

the technique is given below, but for more details reference may be made to a recent

review article by Lourenco et.al 8

The PIDV technique can be described as follows: A selected cross section of the

flow is illuminated by a sheet of coherent light. A pulsed laser, such as a Nd:Yag laser,

is normally used as the light source. The laser sheet is formed by focusing the laser

beam with a spherical lens of long focal length followed by a one-dimensional expansion

using a cylindrical lens. \Vithin the illuminated sheet, the flow is made visible through

small tracer particles seeded in the fluid. The illuminated particles generate resolved

diffraction limited images which are recorded in a multiple exposure photograph. The

spacing between the images of the same tracer provides a measure of the local fluid

velocity. To determine this spacing, a Fourier analysis is used. A focused laser bean

is used to interrogate a small area of the multiple exposure photograph transparency.

The diffraction produced by coherent illumination of the multiple images in the film

transparency generates Young's fringes. The fringes are oriented perpendicular to the

direction of the local displacement and their spacing is inversely proportional to the

magnitude of the displacment. In this method, the sign of the velocity can not be

determined. A method to resolve this ambiguity, as well as to improve the dynamic

range for the velocity measurement, is incorporated in this experiment. The method

consists of recording the flow field in a moving reference frame, thus superposing a

known velocity bias to the actual flow velocity. This is accomplished by optical means

using a scanning mirror.

2. Apparatus and Instrumentation

A simple low speed air supply system was used to flow air into a settling chamber

25 cm in length and 7.5 cm in diameter. A honeycomb and a series of screens at the

inlet of the settling chamber were used to reduce the flow distrubances. The cross-

section area of the nozzle contraction changes gradually from a circular cross section,

7.6 cm in diameter, to a rectangular nozzle. The long (L) and short (W) dimensions of

the rectangular nozzle are 3cm and 0.75 cm respectively and the streamwise contours

of the contraction are fifth-order polynomials. The contoured nozzle has a contraction

ratio of 19.6:1 over a length of 1.6Di, where Di is the inlet diameter. In order to

obtain appropriate jet seeding, smoke particles in the sub-micron range are produced

using a Rosco-type 1500 smoke generator. The smoke and ambient air are n-fixed in

a large cylindrical settling tank (100 cm in length and 45 cm in diameter). The air-

smoke mixture is then supplied to the settling chamber of the jet using small axial fan.

A second smoke generator of the same type is used t_o seed the outside ambient fluid

surrounding the jet. To minimize ambient distrubances the whole apparatus is placed

in a rectangular room (183crn x 183cm x 100cm) made of transparent walls.



For the illumination, a laserbeamfrom afrequency-doubled,double-pulsedNd:Yag

laser (Spectra-Physics model DCR-11) is steered and focused to a diameter of 0.3 mm

using an inverse telescope lens arrangement. A cylindrical lens with a focal length of

-24.5 min diverges the focused beam one dimensionally, creating the light, sheet. The

laser sheet is 4.5 cin wide and illuminates the central plane through the small dimension

of the nozzle. Two laser pulses with a duration of 10 nsec and a separation of 50/_sec are

used for the double exposure recording. The pulse separation of 50llsec is much smaller

than any relevant time scale of the flow field, thus the double exposure photograph

truly represents a flow field at a given instant of time. The photographs were taken at

random and some times on different days.

The analysis of the photographs was performed by means of an integrated im-

age analysis system based on Gould IP-8500 digital image processor controlled by a

12VA.¥II. The system also includes a computer controlled scanning mechanism for

updating the position of the film transparency. The algorithm used to determine the

velocity vector is discussed in Prof. 8, and its accuracy is estimated at 1% or better.

The velocity vectors were obtained in a cartesian grid (60 x 80). Using a central finite

difference scheme, the instantaneous vorticity was obtained with ma estimated accracy

of about 5%.

In addition to the use of PIDV technique, a lasersheet flow visualizationstudy was

conducted. A thin lasersheet was used to illuininatea plane of interestwithin tl_eflow

field.The linage was captured by a video camera at 30Hz frame rate. Three different

planes are selected for this study: the two central planes along the major and minor

axes, and a plane along the diagonal of the nozzle exit (i.e45° to the major and minor

axes.

Initial Conditions:

The nozzle employed in the present investigation is designed to produce a top-hat

mean velocity profile with laminar boundary layers at the nozzle exit wall. A mean

centerline velocity of 4.5 m/sec is maintained at the exit plane of the nozzle. The

centerline turbulence intensity is about 3%. The laminar boundary layer profile at the

nozzle exit, as measured by a single normal hot-wire, is of Blasius type. The average

moinentum thickness along the long and short dimensions of the nozzle are about 0.08

Inin and 0.09 Into respectively. The Reynolds number based on the small dimension

of the nozzle exit. and the exit mean velocity is 2250. On the basis of arguments put

forth by Abrainovitch r, a proper length length scale to be used in defining the Reynolds

number for a rectangular jet is the equivalent diameter taken as De = 2v_ = 2W,

where a and b are semi- major and smi-minor axes respectively. The corresponding

Reynold number (Re = b_2____) for the present experiment will be 4500. The use of

such a length scale to characterize a jet is also supported by the experiinental data of

Hussain and Husain 6 for elliptic jets.

3. Results and Discussion

Typical double exposure photographs of the jet in the cemral plane through the

small dimension of the nozzle, for two different times, are shown in figure 1. The pictures

display the flow field from the nozzle exit. to a downstream location of S widths. From

a number (about 100) of similar photographs and flow visualization pictures the



Figure 1. ln_tantaneou_ double exposure photograph_, of the central plane containing the

_*rnall dimension o/the nozzle,

near field ( X/W < 20; where X is the coordinate along the centerline of the jet with

its origin located at the nozzle exit) of the jet can be characterized by three distinct

regions. The first region in which the initial shear layer is unstable and rolls up into

discrete vortices; an interaction region in which two or more vorticies interact with each

other; and a region in which vortices break up into three dimensional motion. From

flow visualization pictures, a cylindrical vortex rolled up as a rectangle is observed at

1.4 widths downstream of the nozzle exit. Further downstream the individual vortices

interact with each other; consequently, the jet spreads very rapidly in the minor axis

plane. Such interactions take place in the region 2.0 _< X/W < 6.0. For X/W > 6 the

large vortical structures become kighly three dimensional.

The passage frequency of the _;ortices at a given location can be obtained by study-

ing the frequency spectra of the hot-wire signal at that location. \Vith this in mind,

frequency spectrum was obtained for various positions in the shear layers surrounding

the jet column for 0.5 _< X/I4 z _< 6.0. Figure 2 shows a selected sample of these taken

in central planes of major and minor axes. The ordinate is the amplitude plotted with

an arbitrary linear scale. The spectrum at the nozzle exit. (X/\V =0.5) shows a distinct

peak at 120Hz. This peak frequency has the same value around the circunfference of

the jet. The Strouhal number based on the intial momentum thichkness is 0.0213 in

the minor axis plane, and 0.024 in/he major a.xis plane. At X/\V = 1.0, in addition to

the peak at 120Hz, several other prominent peaks are observed at 148, 176, 210, 246,

and 282Hz. These peaks are the same in the two central planes. Based on this and

flow visualization observations: i_ is suggested that a single cylindrical vortex is shed in

an instant. Further downstream (i.e X/I4 ,_ _> 4) a single prominant broad band peak is

observed at 72Hz in the central XY plane. This frequency represents the so called the

"preferred mode" in jets. The corresponding Strouhal number based on the equivalent

diameter (St = /--_ is 0.24. It is generally observed that. the preferred Strouhal number

is approximately proportional to the Stroulhat number of the shear layer mode _ (i.e the

vortex passage frequency at, the end of the potential core (X/W =4) is simply a fraction

of the shear laver mode frequency). However_ in the present study such a relationship

is not observed. It may be suggested that the regular sequence of amalgamations of

vorticies (i.e pairing process) observed in axisymmetric and plane jets does not _ake
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Figure _. Evolution of frequency _?ectra in the shear layers of the minor a_is (XY') and

major azis (XZ) planes.

place. Further confirmation of this can be found later in the paper. The prominant

peaks observed at higher frequencies (>120Hz) are believed to represent the effect of

the corner "streaznwise vorticies" that are generated due to uneven boundary layer

structure at the nozzle exit. This aspect is presently being investigated.

Figure 3a shows a typical instantaneous velocity field corresponding to the double

exposed photograph in figure la. The results after removal of velocity bias are shown

as a series of uniformly scaled velocity vectors. Because of the velocity gradients are

largest in the transverse direction, the velocity data were acquired using a rectangular

mesh (O0 x 80) with a mesh spacing of I mm in the axial direction and 0.5 mm in the

transverse direction. Using a central finite difference scheme the instantaneous vorticity

and strain rates are calculated, and shown in figure 3. Also included in the figure are

the instantaneous Reynolds stresses corresponding to a typical phase shown in figure

la. These results represent, with great fidelity, the aforementioned regions of ti]e flow

field. Superposizion of the three Reynolds stresses on the vorticity plot shows thaz the



2.80.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.,028

.. ,
2.0 _ "_ 2.0
1.2 _ 0<_ ,::. 1.2

_ r

"'..../_ ..... " "'- ..o_:._..'.,,_e'=.

,, ' .:

-2.% ,1.0 2.O 3.0 4.0 5.0 6.0 7.0 8.0 -2"_

x/W

2.80. ) 1.0 2.0 3.0 4.0 5.0 6.0 7.0

(c).....

o., o,

-2.0

-2"80.; 1.0 2.0 3.0 4.0 5.0 _.0 7.0

x/W

8.02. 8

_2.0

_I_ -17.4

-L2

-2.0

2B

2._o.o

2.0

1.2

0.4

-0.4

-1._'

-2.0

-2.%.

'__ -2.O

' ' _ ' _ -2 8
1.0 2.0 3.0 4.0 5.0 8.0 7.0 8.0

X/W

2.80-0

2.0

1.2

0.4

-0.4

-'L2

-2.0

-_._.'_

_.0 2.0 _.0 _.0 _.0 e.o 7.0 e.o
' ' ' ..- ' ' ' _W./'_ :l 2.e

(e) ",_,,::'__-------_ 2.0
. "":::, ;',.,_..:.;;.:._

,::'--._., /% '::,",. ,,,'_';,_/

•

<_ . ,_. _;,_. : . -.',._ .. ,'.-._._.'..'_.::, -OA

._" ,...:_:..-::_._.3:_ •

.,_'_;.-_._.';_." ".-" :-2,o

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

x/W

2.B0"0

2.0

1.2

0.4

-0.4

-1.2

-2.0

-2.8
0.0

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
' , ;: _ .....'_.._1_._,_.. _,_:_-" J 2.e

(o
"', .:: :..._, _ - '_ 2.0

- __, " '..._...:;'!__
,:, i,..:_;_._ _.2

., . '...z.> .,.':,,:',,..:.._ -_'_
,'.'_-_'.',::'__.::.;:".'...';'..,,,'_,-,_4.,:,,.,....
......:.,.,.%?._,____...:_.-:_

o a_._._. ;_".'._,_ _,;:. - _.2

• :_.:_ ,=. _

r : " "' _ ' -2._
1.O 2.0 3.0 4.0 5.0 6.0 7.0 8.0

x/W

Figure 3. Instantaneous quantities corre_pondin 9 to the photograph in figure ia. a)
tj t2 ,Ut2 ljtt. t

Two-di_nensionaZ velocity/field, b) ATorrnalized vorticit_ field, c) _ d) e) f), _-7_, -57"j,
c_ W
--;.--o

peaks for these quantities lie away from the vorticity peaks associated with the large

vortical structures. The Reynolds stress and vorticiKv patterns show a strong symmetry

with respect, to the jet centerline. The nature of three dimensionality generated can.

be observed in a plot. of the instantaneous strMn rate (figure 3f). Similar resul_.s are

obtained for a number (47) of photographs representing _nd_vidual events that. take place

in the transition region of the jet. After careful examination of the instantaneous double

exposed pho_o_raphs_ and the fiow visualization pictures, _tis suggested that there are

more than one type of multiple vortex interactions occur in the transition region of t.he

jet.
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\Vith the use o_ two dimensional spatial cross-correlations between a selected set

of instantaneous velocity fields, two typical sequences of vortex interactions are selected

and presented in figures 4 and 5. Included in these figures are the double exposure

photographs and and their corresponding vorticity distributions. In each figure, the first

photograph (a) represents the beginning of a sequence, and the following two pictures

(b) and (c) depict the progressive development of a vortex interaction process. In this

study; the flow organizes itself symmetrically with respect to the jet centerline. To guide

the following discussion: individual vorticies in the figures are numbered as shown. The

initial shear layer emanating from the nozzle lip roll up into a succession of cylindrical

vorticies. Three such vorticies are identified in figure 4a. Two successive vorticies 2 and
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3 interact with one another in such a way that the trailing vortex 2 catches up with

vortex 3 (figure 4b), proceeds to and moves at a high speed through the leading vortex

(figure 4c). During this process, the leading vortex 3 moves away from the jet centerline

resulting in enhanced spreading of the jet in the minor axis plane. In the mojor axis

plane, like in the case of an elliptic jet s'o , the cylindrical vortices are bent and distorted

in the lateral direction. A different type of vortex interaction process is shown in figure

5. As before, two successive vorticies 2 and 3 begin to intreract with each other in figure

5a, and at later times produce patterns different, from those observed in the previous

sequence. Yet a third type of vortex arrangement can be seen in figure 1, where two

successive vor_icies appear to move together without significant, interaction between



them. In the present experiment, we haveobservedmore than three different types of
vortex interactions. Careful examination of the pictures from the video tape suggest, that

the different interactions noted above occur repeatedly. Based on the limited amount

of data, it may be argued that the different types of interactions observed here are a

conesquence of the presence of "stream-wise corner vortices" and their interactions with

cyclindrical vorticies surrounding the jet. Further investigations are clearly needed to

unravel the different facets of the vortex interactions observed here.

4. Concluding Remarks

This exploratory experiment, for the first time provided information regarding the

vortex formation and their subsequent interactions in the transition region of a rect-

angular jet. This description of the interactions between the cylindrical vorticies is

greatly aided by the instantaneous velocity field measurements and their corresponding

vorticity fields.

Our data suggest that there are more than one type of vortex interaction processes

occur in the transition region before the jet becomes highly three dimensional. Two

such processes are described in this paper. Present results indicate that the "stream-

wise vortices" generated at the corners of the nozzle exit, due to uneven boundary layer

structure, may have significant influence on the development of the transition region of

a rectangular jet.

The cylindrical vorticies once formed and shed; generate energetic level coherent

vorticity and turbulence production in between the vortical structures. To properly

characterize the jet structure in the initial region, our experiment indicates that the

detailed description of the instantaneous flow of the individual events may be necessary

for better understanding of the physics of transition in three dimensional jets.
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them. In the present experiment, wehave observedmore than three different types of
vortex interactions. Carefulexamination of the pictures from the video tape suggestthat
the different interactions noted aboveoccur repeatedly. Basedon the limited amount
of data, it may be argued that the different types of interactions observedhere are a
conesquenceof the presenceof "stream-wisecorner vortices" and their interactions with
cyclindrical vorticies surrounding the jet. Further investigations are clearly needed to
unravel the different facetsof the vortex interactions observedhere.

4. Concluding Remarks

This exploratory experiment, for the first time provided information regarding the
vortex formation and their subsequentinteractions in the transition region of a rect-
angular jet. This description of the interactions between the cylindrical vorticies is
greatly aidedby the instantaneousvelocity field measurementsand their corresponding
vorticity fields.

Our data suggestthat there aremore than one type of vortex interaction processes
occur in the transition region before the jet becomeshighly three dimensional. Two
such processesare describedin this paper. Present results indicate that the "stream-
wise vortices" generatedat the cornersof the nozzleexit, due to unevenboundary layer
structure, may have significant influenceon the developmentof the transition region of
a rectangular jet.

The cylindrical vorticies once formed and shed; generateenergetic level coherent
vorticity and turbulence production in between the vortical structures. To properly
characterize the jet structure in the initial region, our experiment indicates that the
detailed description of the instantaneousflow of the individual eventsmay benecessary.
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